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Abstract—The influence of buckling pattern localization on the collapse mode of axially compressed
elastic-plastic circular cylindrical shells is investigated. Initial imperfections are assumed to be axisym-
metric and the possibility of bifurcation into a non-axisymmetric shape is analysed. For sufficiently
thin-walled shells bifurcation occurs before the load maximum: but in more thick-walled shelis the
axisymmetric deformations are stable beyond the maximum load. at which localization into a single
outward buckle takes place. it is found that localization delays bifurcation considerably, such that
sufficiently thick-walled shells will collapse in an axisymmetric mode. The theoretical predictions are
compared with a number of published experimental results.

1. INTRODUCTION

The collapse mode of axially compressed circular cylindrical shelis made of ductile materials
has been subject to a number of experimental investigations, e.g. Batterman[1], Lee (2], Horton
et al.[3] and Johnson et al.[4]. All these observations show that relatively thick shells (small
radius to thickness ratios) buckle axisymmetrically, whereas thinner shells buckle in a diamond
pattern with a circumferential wave-number dependent on the thickness. The theoretical
background of this transition from a non-axisymmetric to an axisymmetric mode of collapse
has not been clear so far.

For shells with a sinusoidal axisymmetric imperfection Gellin[5] has analysed the occur-
rence of bifurcation into a non-axisymmetric mode. This analysis for shells compressed into the
plastic range is analogous with that of Koiter[6] for elastic shells. The imperfection sensitivities
predicted by Gellin[5] are in good agreement with test results, but the analyses suggest that
nonaxisymmetric buckling should always be observed. These analyses were based on J,
deformation theory (a nonlinear elastic material model).

Recently the question of bifurcation from a periodic axisymmetric pattern into an asym-
metric mode has been reanalysed by Tvergaard[7]), based on incremental elastic~plastic
constitutive relations. Also here bifurcation is found for all shells considered, even very
thick-walled shells. Thus, the discrepancy between the J. deformation theory predictions of
Gellin[5] and the experimentally observed transition to purely axisymmetric buckling is not a
result of neglecting elastic unloading in[5]. But another significant feature disclosed by the more
recent analyses{7] is that for the thicker shells bifurcation occurs after the load maximum, so
that the assumed periodicity of the axisymmetric pre-bifurcation solution is unrealistic.

For a wide variety of structures under compressive loading, with the common property that
the applied load vs shortening curve achieves a maximum, Tvergaard and Needleman[8-10]
have shown that localization of the buckling pattern will take place at the load maximum. This
means that the assumption of periodic solutions in the axial direction used in previous
cylindrical shell buckling analyses, e.g.[5-7], is valid before a maximum is reached; but after a
maximum, localization into one or a few buckles in the axial direction must be expected. These
considerations refer to a situation, in which the overall axial shortening of the shell is
prescribed. If the axial load was the prescribed quantity, stability would be lost at the
maximum.

The extent to which localization of the axisymmetric prebifurcation deformations affects the
onset of bifurcation into a non-axisymmetric mode is investigated in the present paper. Based
on the results of {7] localization is expected to play a role for the thicker shells, and the results
to be presented do indicate a transition to axisymmetric collapse for sufficiently thick-walled
shells. Both the influence of small geometrical imperfections and of boundary conditions are
studied, and the predictions are compared with experimental results for a variety of materials.
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2. BASIC EQUATIONS
The circular cylindrical shells considered have the length L, the middle surface radius R and

the thickness h. A point on the middle surface is identified by the coordinates x' and x’ that
measure distance in the axial direction and in the circumferential direction, respectively. The
displacement components are u® on the surface base vectors and w on the outward surface
normal.

The in-plane components of the Lagrangian strain tensor at distance x* outward from the
shell middie surface are approximated by

Nap = eaB_leaB 2.1

where €, is the membrane strain tensor and .z is the bending strain tensor. A nonlinear
expression for €,, and a linear expression for .z shall be used here{11]

1 1
eaa = i (uﬂ-ﬂ + uB.a) - daﬁ“, + i a‘ya(u'y.a - d'yaw) (u&B - d&B“’) + % (“‘.u + dayu,) (“"_B + dﬂaué) (22)

1 |-
Kag =§ [(w.0 +d,u) g+ (wg+dg"u,), — % d (g, — 1, 5) — 3 dy(u, ., — uw,)] (2.3)

where a,; and d,; are the metric tensor and the curvature tensor, respectively, of the
undeformed middle surface, and ( ), denotes covariant differentiation. Greek indices range
from 1 to 2, while Latin indices (to be employed subsequently) range from 1 to 3, and the
summation convention is adopted for repeated indices. The stress tensor is denoted by " and
(') denotes an incremental quantity.

The elastic-plastic shell material is assumed to develop a vertex on subsequent yield
surfaces, as described by the J, corner theory proposed by Christoffersen and Hutchinson[12].
In this theory the instantaneous moduli for nearly proportional loading are chosen equal to the
J, deformation theory moduli and for increasing deviation from proportional loading the moduli
increase smoothly until they coincide with the elastic moduli for stress increments directed
along or within the corner of the yield surface.

With MY, denoting the deformation theory compliances, so that n; = Mjud*, and My,
denoting the linear elastic compliances, the plastic part of the compliances is Cjy = My — My
The yield surface in the neighbourhood of the current loading point is taken to be a cone in
stress deviator space with the cone axis in the direction

/\U = Sij(cm"pqsmnspQ)—l/2. (2‘4)

Here, s” = ¢" - g'0,*/3 is the stress deviator tensor and g is the metric tensor in 3-dimensional

coordinates. The positive angular measure 8 of the stress-rate direction relative to the cone axis
is defined by

€05 8 = Cijr $*(Crmpgs ™"$™9) "2 2.5)

and a stress-rate potential at the vertex is formulated as

W =2 Mo + % f(8)Ciu ™. (2.6)

NS TR

From this potential the strain-rate is obtained as

. GZW Sk . ki 2
M= 3oTgh 0 = M (8)a 2.7

with 8-dependent compliances. Since the stress-state in the shell is approximately plane, only
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the in-plane stresses enter into (2.7), which is inverted to yield the plane stress incremental
constitutive relations on the form

G = L**(8)n., 2.8)

The angle of the yield surface cone is specified by 6, so that the transition function f(8) in
(2.6) is zero for 6. <@ <. In the total loading range, 0 <8 =<4, f(8) is unity, and in the
transition region, 8,= 0 <@, f(6) is chosen to smoothly merge the deformation theory moduli
with the elastic moduli in a way which ensures convexity of the incremental relation.

More detailed descriptions of the J, corner theory formulations in connexion with buckling
analyses have been given previously[9, 7] and shall not be repeated here. All analyses in the
present paper assume a totally nonlinear material response, §,=0, and a rather blunt vertex
specified by (B.)max = 100°, where cos 8 = 6.(35;57/2)""* in terms of the Mises effective stress
o, = (35;5"/2)'". The uniaxial stress-strain curve is represented by a piecewise power law with
continuous tangent modulus

, for o=ao,

= 2.9)
‘_T;[l(i) —l+1], for o>o0,
E [n \o, n '

where n is the strain hardening exponent, o, is the initial yield stress and E is Young’s
modulus.
The requirement of equilibrium is specified in terms of the principle of virtual work

miq

f {N“PSe,5 + M*®5k,5) dA = Pbu, (2.10)
A

where A is the middle surface area and P is the total axial load at one end of the cylinder, with
corresponding axial displacement up. At the other cylinder end zero axial displacement is
prescribed. The membrane stress tensor N*# and the moment tensor M= in (2.10) are taken to
be

hi2

hi2
Nef =J’ o dx’, M*= —f o*x* dx’. (2.1D)

~hf2 ~hi2

Incremental relations for N° and M*® in terms of € ; and &, are obtained using (2.1), (2.8) and
(2.11).

3. METHOD OF ANALYSIS
The nonlinear pre-bifurcation solutions are obtained numerically by a linear incremental
method. The current values of the field quantities N°%, M“?, ¢,g, etc. are taken to express an
approximate equilibrium state. By expanding the principle of virtual work (2.10) about this
state, using (2.2) and (2.3), the equation governing the increments, N ¢, M°#, €,p, etc. is found.
To lowest order this incremental equation is

J' (N5, + M*5kos + NP[a™(ih,.0 — d,u) (81, 5 ~ d,s5W)
A
+ (W, +d, i) (8w + dg"8u, )]} dA
= Péup - [ f {N"®8e,5 + M5k .5} dA — Poup ] G.1)
A

The terms bracketed on the r.h.s. of (3.1) are included to prevent drifting of the solution away
from the true equilibrium path.
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At each stage of the fundamental axisymmetric solution the possibility of bifurcation into an
asymmetric shape is investigated. The equations governing bifurcation are obtained by assum-
ing that, corresponding to a given increment of the prescribed quantity. there are at least two
distinct incremental solutions. Using the incremental version of the principle of virtual work.
with (7) denoting the difference between the two incremental solutions. the following equation
is obtained

f {N*%8e. + M*P8k s + N“Pla™ (i, — d, W) (8u, 5 — d,z8w)
A

+ (R, +d)) (Bw,y+dg#ou,)]))dA=0  (3.2)

which must be satisfied by non-zero bifurcation solutions. Here, N ** are the current membrane
stresses in the fundamental solution.

Bifurcation modes are assumed of the form
mx® : i

R

i, = U, cos (3.3)

where the circumferential wavenumber m is an integer, and the amplitude functions U(xh,
Us(x') and W(x‘) depend only on the axial coordinate. Thus, in the solution of (3.2) the
wave-number m is searched that gives the first critical bifurcation point.

The integrations in circumferential direction are straightforward, both in (3.1), where the
axisymmetric displacement increments are independent of x°. and in (3.2). where the variation
in circumferential direction is sinusoidal. The equations are solved approximately by the finite
element method. Both the one-dimensional displacement increments &, and w of the fun-
damental axisymmetric solution and the bifurcation mode amplitudes U, U- and W are
represented as Hermitian cubics within each element.

The integrals in the axial direction in (3.1) and (3.2) are evaluated numerically, using 4 point
Gaussian quadrature within each element, while Simpson’s rule with 7 integration points is used
through the thickness. The direction of the stress-rate, defining the angle 8 in the integration points,
should in principle be determined by iteration at each incremental step; but instead the stress-rates
computed in the previous increment are employed. Since small increments are used in the
computations, this scheme leads to small errors.

The bifurcation solutions to be presented are obtained by application of a comparison solid.
which is identified by the instantaneous moduli associated with the current values of 8 on the
fundamental solution. In the most common situation, where some material points are currently
in the nonlinear transition range 6,< 6 <#6,, this comparison solid noes not excilude earlier
bifurcation in the underlying elastic plastic solid, as has been discussed in some detail in [7].
However, based on the results of [7] this comparison solid is expected to provide a good upper
bound approximation of the actual first critical bifurcation point.

Bifurcations predicted by the simplest flow theory of plasticity with a smooth yield surface
are much delayed relative to the J, corner theory predictions, particularly for thicker shells[7].
However, using the simplest flow theory in an attempt to explain the transition to purely
axisymmetric buckling would hardly be realistic, since it is well known that bifurcation
predictions of deformation theory are generally in much better agreement with experimental
buckling loads for plate and shell structures than similar predictions based on the simplest flow
theory (see Hutchinson({13]). J, corner theory incorporates the deformation theory modul, as
those corresponding to total loading (8 < 6,), into an incremental elastic-plastic law accounting
for elastic unloading etc. The bifurcation predictions still depend on the parameters 6, and
(B)max describing the vertex, though. For the shells with initial axisymmetric imperfections the
values 8,=0 and (B.)max = 100° to be used here generally result in an average somewhere
between the bifurcation predictions of J, deformation theory and of J, flow theory. respectively
(see[7]).

It is noted that more accurate strain measures, (2.2) and (2.3), than those of shallow sheli
theory are used in the present investigation, because the critical circumferential wave-numbers
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in the thick-walled shells are small (m = 3 or even m = 2 are frequently found for the radius to
thickness ratios considered). It has been checked that also the column buckling load (m = 1) for
a long shell is accurately represented by the shell theory employed.

The axisymmetric imperfections to be considered in the following are chosen according to
the critical buckling mode for a perfect shell, and the corresponding critical load is used for
normalization. The critical stress o, for this axisymmetric mode and the corresponding critical
half-wave length [. are given by{7, 14]

_ “,ZE‘hZ N R3h2 14 E: El2 Y- 1/4
o= - =a 5| [2-(3) ] 64

where E,. E, and E,, denote the physical values of the plastic moduli L'"', L** and L''"®,
respectively, at the bifurcation point. In the elastic range the critical stress (3.4) reduces to the
well-known value o, = - {3(1 - v3)}"""Eh/R.

4. LOCALIZATION BEFORE BIFURCATION

The influence of buckling pattern localization shall be studied by analysing a shell with a
geometrical imperfection specified as an initial normal displacement w of the form

U H
w= ~h(§,+§: cos Fi—) cos Wl—t 4.1

Here, L is the length of the shell segment analysed, I, is the critical half wave length according
to (3.4), and we shall choose L = 5I.. The parameter £, is the amplitude of an axisymmetric
periodic imperfection in the shape of the critical buckling mode for a perfect shell, and £, gives
a modulation of this amplitude. Most of the results to be presented are obtained using 20
elements along the length L. This is expected to give good accuracy, since computations based
on only 10 elements agree well with the results obtained by the finer mesh.

For the fundamental axisymmetric deformation symmetry conditions are assumed at the
ends of the segment analysed

u|=A 1. lll=0} 1 _ -
w.,=0} at x' =0, w,=0 at x' =1L 4.0)

with axial displacement A at one end, so that the average axial strain is A/L.

The bifurcation modes are mainly characterized by a circumferential waviness in regions
with compressive hoop stresses. Thus, at an inward axisymmetric buckle, such as at x'=0,
where the peak compressive hoop stress occurs at the symmetry plane, the buckles are
assumed symmetric about this plane

U,=0, W,=0 at x'=0. 4.3)

At an outward axisymmetric buckle, such as at x' = L (with L = 5., the peak hoop stress at
the symmetry plane is tensile, so that here the bifurcation mode amplitude is assumed to vanish
according to the anti-symmetry conditions (see also[5-7})

U,=0, W=0 at x'=L (4.4)

Results of some computations are shown in Fig. I, where the load is normalized against the
critical load P, for axisymmetric buckling of a perfect shell, see (3.4). The material has an initial
yield stress given by o,/E =0.0025, Poisson’s ratio » =0.3, the strain hardening exponent
n = 10, and the parameters 68, =0 and (B,)n.x = 100° characterizing the vertex formation. The
radius to thickness ratio is R/h = 12.5, corresponding to the most thick-walled shells analysed
in [7]. The dashed curve in Fig. 1 shows a result obtained in [7] for £, = 0.02and £, = 0, assuming
that the axisymmetric mode remains periodic beyond the load maximum and that the bifurcation
mode is periodic with the half wave length 2I. in the axial direction.
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Fig. 1. Axial load vs shortening for cylindrical shells with a./E = 0.0025 and n = 10. Solid curve and dotted
curve correspond to L = 5l while L = I. for dashed curve.

When localization of the axisymmetric buckling pattern is allowed for, either a localized
outward buckle or a localized inward buckle will be expected, and small initial imperfections
are chosen to enforce each situation. For £, = 0.01, &= —0.01 localization in an outward buckle
takes place at x' = L, whereas for £, =0.01, & = 0.01 localization occurs in an inward buckle at
x'=0. In the case of the outward buckle the solid curve in Fig. 1 shows that bifurcation is
much delayed by localization and that the amplitude w.,, of the axisymmetric buckle at
bifurcation is nearly four times the value found under the assumption of periodic modes
(dashed curve). However, for the inward buckle (the dotted curve) the delay is much smaller
and the value w,,,/l. =0.11 is only a little higher than that of the periodic mode. The critical
circumferential wave number is m = 2 for the bifurcation on the solid curve, and m =3 on the
two other curves.

The axisymmetric middle surface deflections at bifurcation are drawn in Figs. 2(a, b)
corresponding to the solid curve and the dotted curve of Fig. 1, respectively. The deflections
are shown in the correct scale relative to the radius, and both sides of the prescribed symmetry
plane are included in the figures. It is seen that localization does take place after the load
maximum, as expected based on more general considerations[8-10]): but a repeated com-
putation for a shell twice as long, - L <x'< L, still with the imperfections ¢, = 0.01, & = 0.01.
shows that the deformation pattern of Fig. 2(b) looses stability just before the maximum.
Bifurcation of the symmetric pattern shown in Fig. 2(b) takes place at A/L =0.017. and
subsequently only one of the two outward buckles grows into a mode quite similar with that
shown in Fig. 2(a).

Thus, beyond the load maxima both the dashed curve and the dotted curve in Fig. |
represent unstable solutions that are only obtained by prescribing symmetry requirements.
which are not realistic in a long shell. The stable axisymmetric mode in a long shell after the
maximum involves localization into a single outward buckle (Fig. 2a), with so small defor-
mations outside the localized region that they are hardly visible. While the load decays. elastic

Fig. 2. Axisymmetric middle surface deflections of cylindrical shells at bifurcation, for R/h=12.5.
oJE =0.0025 and n = 10. Computations for L = 5I, with both sides of the symmetry plane drawn. {u
§| =0.01, f: = -0.01. (b) §| = fj= 0.0t
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unloading takes place everywhere except in the near vicinity of the growing bulge, resulting in a
much stiffer material response. This stiffening effect together with the reduced compressive
hoop stress beside a single buckle, relative to that between two neighbouring buckles, gives rise
to the significant delay of bifurcation.

In the following two figures all results are based on the imperfections & =0.01 and
&= —0.01, which result in the stable mode of localization. Figure 3 illustrates the dependence
on the radius to thickness ratio R/h for shells made of the same material with strain hardening
exponent n = 10, also considered in Fig. 1. In the case of a relatively thin shell, R/h = 100,
bifurcation occurs soon after localization at a small value of the axisymmetric mode amplitude
Wnax- FOr decreasing values of R/h the bifurcation delay increases, and at the same time the
critical circumferential wave-number m decreases, as is also observed in experiments. The
result shown in Fig. 3(d) for R/h = 12.5 is identical with the solid curve of Fig. 1.

Perhaps the value of the parameter w,,./l. gives the strongest indication of the bifurcation
delay. When bifurcation occurs for a small value of this parameter, as in Fig. 3(a), it seems
quite plausible that this will lead to final collapse in a diamond mode. But bifurcation at a high
value of wp,,/l. of the order of 0.2-0.3, as illustrated in Fig. 2(a), could hardly change the fact
that the already well developed buckle is going to collapse completely in a shape that remains
essentially asixymmetric. Whether or not bifurcation affects the mode, in which the next buckle
collapses during the progressive folding up of the whole shell, could not be analysed without
accounting for large rotation effects in the shell theory; but results as those shown in Fig. 3
certainly indicate a transition in the collapse mode of the first localized buckle, such that
thinner shells will prefer a diamond pattern with a certain circumferential wave-number,
whereas shells thicker than an R/h value slightly above 25 will form an essentially axisymmetric
buckle.

Computations with periodic imperfections, £, = 0.02 and &, = 0, have also been performed
for the shells considered in Fig. 3. In all four cases localization of the axisymmetric mode
occurs immediately after the load maximum, as already mentioned in connexion with the
instability of the dashed curve in Fig. 1. However, {or the three thinner shells bifurcation a little
before the maximum is found corresponding to small circumferential wave-numbers (e.g. m =3
or 2), even though none of the bifurcation modes with axial half wave length 2I. that were
considered in [7] occur before the maximum. Such earlier bifurcations into modes with half
wave lngths longer than 2/, were also found by Budiansky and Hutchinson[15] for elastic
shells. These long wave modes are no longer critical when axisymmetric localization takes
place, and for the thickest shell considered, R/h = 12.5, they do not occur at all. This could
partly explain the transition to purely axisymmetric collapse for thick shells; but in practice the
required periodicity or near periodicity of the pre-bifurcation deformations will hardly be

P/FZ; x maximum F”:’c
104 bifurcation mz8 P 10
. m=5
Wmax/lc 20034 w1, -0 087
05 05 o e
R/h=100 R/h=50
0 0
0 0003 a/L 0006 0 0006 &/t 0012
{a} (b}
PP, P/
1.0 1 10
m=3,
0.5 05
R =027
“max Wrnax/l =034
R/he25 R/h:125
0 0
Q 0015 aA 003 0 004 s/l 008
(e} (d}

Fig. 3. Bifurcation indicated on curves of axial load vs shortening for cylindrical shells with n = 10.
a/E =0.0025, L = 5. and & =001, £&,= ~0.01.
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common. Some kind of more localized small imperfection that triggers the mechanism dis-
cussed in relation to Fig. 3 seems more likely, and could in fact hardly be avoided.

Column buckling (m = 1) is also found in some of the analyses, particularly for the shells
with periodic axisymmetric imperfections, where the effective bending stiffness is reduced all
along the shell. However, these instabilities are not reported here, since they depend heavily on
the column type boundary conditions assumed and on the total length of the shell. Naturally,
the experimentally observed transition from a diamond pattern to an axisymmetric pattern
refers to shells sufficiently short so that column buckling does not occur.

The degree of strain hardening of the shell material affects the bifurcations found in [7] such
that a high hardening material favours bifurcation prior to the maximum more than a low
hardening material. This indicates that the radius to thickness ratio R/h at the transition to
purely axisymmetric buckling should be larger for a low hardening material than for a high
hardening material.

In Fig. 4 a very low hardening material is considered, with strain hardening exponent
n = 100 (nearly ideally plastic), but otherwise the same material parameters used in the previous
figures. Here, the bifurcation delay is larger than found in Fig. 3; but still for R/h = 50 the value
Wax/lc = 0.091 at bifurcation is not very big. In Fig. 4(c) for R/h = 25 the delay is very large.
and the axisymmetric solution reaches w,,,,/l. = 0.29 at the small load P/P. = 0.17 without any
bifurcation. Thus, for the low hardening material Fig. 4 indicates a transition to purely
axisymmetric buckling at an R/h value somewhat higher than that found in Fig. 3, but still in the
range of 50-25.

S. EDGE EFFECTS

The localization considered in the previous section was assumed to be initiated by a small
axisymmetric geometrical imperfection of the middle surface. Even for a completely perfect
shell the critical buckling mode in the plastic range is axisymmetric and this mode too will
localize at the joad maximum. But in reality the influence of the boundary conditions will often
act as a more dominant imperfection than small inaccuracies of the middle surface geometry.

Various edge effects, such as those resulting from clamping. from frictional support against
a flat plate or from a ring stiffener, have the common feature of promoting an axisymmetric
waviness near the edge. Thus the focus in the present paper on axisymmetric deformations and
on the possibility of bifurcation away from these is naturally connected both with the edge
effects and with the shape of the first critical buckling mode in a perfect shell.

Here a completely clamped shell will be considered in order to get some impression of the
influence of edge effects. Thus, at x'= L the boundary conditions for the fundamental
axisymmetric solution are taken to be

u, =0, w=0, w,=0, at x'=1L (5.1

and the conditions on the bifurcation mode are taken to be

U,~0,(J:=0} - 32
W=0, W‘lzo at x'=1L. (5.-)

At the other end, x' =0, the symmetry boundary conditions (4.2a) and (4.3) are still emploved.

P/Pc x Maximum
10 +e biturcation
m=8
03 Wrnay/{c=0050
R/h =100 o
OO 0002 /L 0004 0 0003 a/L 0006
(a} (o) ]

Fig. 4. Bifurcation indicated on curves of axial load vs shortening for cyviindrical shells with n = 100,
o JE=00025, L =35l and £&=001. &= 0.0
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It is noted that, in addition to an edge clamping, (5.1) and (5.2) also represent the conditions at a
ring stiffener with large rigidities against bending, torsion and circumferential stretching. The
shells considered are still taken to have the length L = Sl., and no initial imperfections are
assumed, & = & =0.

During axial compression an outward wave forms near the clamped edge, with a rather small
amplitude, but large enough so that the first plastic yielding takes place here. Furthermore, the
localized buckle growth after the load maximum is initiated by this edge wave, so that the effect
of the edge wave is similar to that of the initial geometrical imperfection assumed in Section 4.
However, with the localized axisymmetric buckle growing near the clamped edge the conditions
(5.2) are a noticeable further restriction on the possible bifurcation modes. In all the cases
analysed the distance between the localized wave peak and the clamped edge is very close to L.

Figure 5 shows results for the shell material also considered in Fig. 3, with strain hardening
exponent n = 10. For R/h = 100 and R/h = 50 bifurcation is considerably more delayed than
was found in Fig. 3, and for the thicker shells, Rfh = 25 and R/h = 12.5, no bifurcation is found
at all in the range considered, up to values of w,,,/l. beyond 0.3. The figure indicates that, with
the clamped edge restrictions, the transition to purely axisymmetric collapse will take place at a
radius to thickness ratio somewhat below 50.

In Fig. 6 results are shown for the very low hardening material that was considered in Fig. 4,
with the strain hardening exponent n = 100. It is noted that the shell with Rfh = 150 in Fig. 6(a)
is thinner than any of the shells considered in Fig. 4. With the large bifurcation delay found in
Fig. 6(c) the indication is that the transition to axisymmetric collapse will be located at an R/h
value somewhat higher than 50.

The shell material in Fig. 7 is also very low hardening, with n = 100; but here the ratio of the
initial yield stress to Young's modulus is given a smaller value, o /E = 0.001. more represen-
tative of mild steel. Figure 7 shows that the bifurcation delay occurs at considerably thinner
shelis than found in Fig. 6, and for R/h =100 no bifurcation is found at all up to an
axisymmetric mode amplitude as large as w,,./l. =0.3. The figure indicates a transition to
purely axisymmetric collapse at an R/h value somewhere in the vicinity of 150.

In connexion with the rather strong influence of the parameter o./E, seen by comparing
Figs. 6 and 7, it is noted that classical buckling in the elastic range (o | < o, according to 3.4)
requires R/h > 242 in a shell with o/E = 0.0025, but R/h > 605 in a shell with o,/E = 0.001. For
the shells made of very low hardening materials the maximum load and the corresponding
buckling pattern localization occur just after initial yielding, at P/P, = 1. Therefore, the general
stress level in the vicinity of the growing localized buckle, including the compressive hoop
stresses that promote bifurcation into an asymmetric mode, will be lower in a shell with a
smaller value of o,, relative to Young's modulus E. Corresponding to this lower stress level
bifurcation at a given axisymmetric mode amplitude w ./l requires a thinner shell.

PR [ moximum PiP.
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Y
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Fig. 5. Bifurcation indicaled on curves of axial load vs shortening for cylindrical shells with n = 10,
oJE =0.0025 and L = 51.. The shells are clamped at one end. with £ = £- = 0
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Fig. 7. Bifurcation indicated on curves of axial load vs shortening for cylindrical shells with u = 100,
oJE =0.00t and L = 5i,. The shells are clamped at one end, with £, = ¢ = 0.

Comparison of Figs. 5 and 6, and of Figs. 3 and 4, shows clearly that the R/h value at the
transition to axisymmetric collapse is smaller for a high hardening material than for a low
hardening material. But comparison of Figs. 6 and 7 indicates that the value of the parameter
o /E has a considerably stronger influence on the Rfh value at the transition,

6. DISCUSSION

The analyses in Sections 4 and S show that localization of the axisymmetric buckling pattern
at the load maximum has a strong influence on the occurrence of bifurcation into a non-
axisymmetric mode. Previous analyses based on assuming periodic modes in the axial direction
have not indicated any transition to an axisymmetric mode of collapse, even for very
thick-walled shells[5, 7]; but it was noted in [7] that neglecting localization at the load maximum
is not realistic. A significant result of the present investigation is that localization delays
bifurcation into a diamond pattern, such that for sufficiently small R/h ratios no bifurcation is
found in the range considered.

The transition indicated by the present bifurcation results, from a diamond mode of collapse
in relatively thin-walled shells to an axisymmetric mode of collapse in more thick-walled shells,
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refers only to the first developed buckle. If the shortening is continued after that the first buckle
has folded up completely, a neighbouring wave will start to form, etc. leading to the progressive
collapse observed experimentally. The distribution of negative hoop stresses around the second
buckle (or a later buckle) is not identical with that around the first buckie; but the mechanisms
are rather similar, with the collapsed buckle providing a rather stiff support at one end of the
next growing buckle. It seems reasonable to expect that bifurcation will be prevented in all
successive buckles, for a value of R/h not too much below the value leading to the transition in
the collapse mode at the first buckle.

The thin shell theory employed in the present investigation, assuming small strains and
moderate rotations, is not completely adequate in all the cases considered. Particularly in the
most thick-walled shells analysed, the thin shell theory does not give high accuracy, and strains
do not remain small. Furthermore, moderate rotations are exceeded in the final stages of the
computations that are continued up to values of wy,,/l. as large as 0.3, However, the tendency
of the bifurcation delay due to localization is clear already in the thin-walled shells, for small
strains and rotations, and the transition to purely axisymmetric collapse is followed, to a large
extent, within the range of validity of the theory. Therefore, it seems reasonable to state that
the essential features of the problem are disclosed by the shell theory employed.

The special elastic-plastic constitutive relationship, J, corner theory, employed in the
present investigation, is chosen because bifurcation predictions based on the simplest flow
theory are generally too conservative[13]. If the simple flow theory had been applied in the
present paper, instead of J, corner theory, bifurcation would have occurred later (see com-
parisons in [7]), and thus larger R/h values at the transition to axisymmetric collapse would have
been predicted.

The cylindrical shells tested by Batterman[!] and by Lee[2] are made of aluminium alloys
with a great deal of strain hardening and with o,/E around 0.004. In both series of tests a purely
axisymmetric mode of collapse is observed for sufficiently small values of R/h, and a diamond
shaped pattern is observed for larger values of R/h. In an intermediate range of R/h values the
observed collapse modes are characterized as almost axisymmetric, as slightly ovalized in the
central region along the shell, or as axisymmetric near the ends with a gentle diamond pattern
on the central region. Predominantly axisymmetric patterns are observed by Batterman(i] for
R/h <45 and by Lee[2] for Rih <30. Also Horton et al.[3] observe the transition of collapse
modes in their aluminium cylinders at R/h = 30,

The computational results in Figs. 3 and 5 for a material with an appreciable amount of
strain hardening, n = 10, and with ¢,/E = 0.0025 are comparable with the experimental results
for aluminium cylinders in [1-3], even though no particular effort has been made to match the
material parameters. The computational results indicated a transition to an axisymmetric
collapse mode at a value of Rfh somewhere in the range of 50-25, which seems to be consistent
with the experimental observations.

Cylindrical shells made of structural steel have been considered by Sridharan et al.[16]. Two
experiments for R/h = 150 show that a mild steel shell with o,/E = 0.0012 has developed a sharp
axisymmetric outward buckle, while a shell made of high yield steel, ¢,/E =0.0015, has
developed a sequence of inward dimples around the cylinder. This is quite consistent with the
computational result in Fig. 7 for a very low hardening material, n = 100, with o /E = 0.001,
where the transition to axisymmetric collapse was predicted at R/h =150. Furthermore,
comparison of Figs. 6 and 7 shows that the transition to the axisymmetric mode occurs at a
smaller R/h value for a larger value of ¢,/E.

Experiments by Johnson et al.[4] includes a series of tests for tubes made of rigid P.V.C.
(polyvinylchloride). The uniaxial stress-strain curve for this material shows an approximately
elastic-perfectly plastic behaviour, with some nonlinearity prior to yielding and an effective
initial yield strain, o,/E, as large as 0.02 or even higher. Collapse in an axisymmetric mode is
only observed in very thick-walled P.V.C. tubes, with R/h <4. The P.V.C. tests are not directly
comparable with any of the computations in the present paper; but the tendency of the result
agrees with the strong sensitivity to the value of the parameter o,/E, as seen by comparing Figs.
6 and 7. The R/h value at the transition to axisymmetric collapse for the low hardening
materials in Figs. 6 and 7 are about 1/4 of the smallest R/h value giving classical buckling in the
elastic range (lo.|=0,). In a shell with o/E =0.02 classical buckling in the elastic range
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requires R/h > 30, and thus the observed value of R/h at the transition in the P.V.C. tubes is of
the order of magnitude to be expected.
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